

Background

- Kurt Von Neergaard (1929).
- Clements to Avery & Mead (1959) advanced the study of surface tension and tied this deficiency to RDS.
- Research on lung surface lining (surfactant) lead to a therapeutic intervention exogenous "surfactant replacement therapy (SRT)".
- Laboratories studied the impact of animal-derived surfactants, which contain surfactant protein (SP-B) and foreign proteins that are potentially immunogenic.
- Other investigators explored the use of synthetic surfactants (controlled formulation and stability; reduce possible inflammatory responses to animal-derived materials and improve production and product availability).

SP-B-B

FPIPLPYCWLCBALIKBIQAMIPKGALAVAVAQVCBVVPL-VAGGICQCLAERYSVILLDTLLGRMLPQLVCRLVLRCSMD

Simplified Peptide Structure

RYSVILLOTLIGAMLPOLVCRI Rillilliriliri Arbraharbar Dilidilidillotild Kingharbar Vaggiocolarysv Fpiddycwiarbai Craikradmipps Killikillik Inivilikillik Killikillikillikillikillik Inivircm

KLLLLKLLLKLLLKLLLK KL4

C. Cochrane

Preclinical Studies of Lucinactant (KL₄)

- Numerous preclinical studies have demonstrated that lucinactant has significant pharmacologic activity involving pulmonary surface tension-lowering ability, improving lung function and oxygenation comparable to commercially available pulmonary surfactants.
- Lucinactant has been shown to possess <u>anti-inflammatory</u> and <u>anti-microbial</u> activity, and is resistant to inhibition by plasma proteins and oxidants when compared with other surfactants.

Zhu et al. Ped. Res. 64(2): 154, 2008.

Aerosolized Lucinactant

- Initial aerosol delivery studies focused on <u>commercially available</u> <u>aerosol generators.</u>
- After testing of these devices in the first aerosol lucinactant study in humans, it became apparent that these <u>commercial devices were</u> <u>suboptimal.</u>
- Engineering efforts were refocused on an alternate aerosol generator capable of delivering <u>highly concentrated</u>, <u>aerosolized</u>, <u>active</u> <u>surfactant</u> to patients in sufficient amounts for an <u>efficacious</u> <u>response within a relatively short period of time</u>.
- These efforts led to novel aerosol generation technology, the capillary aerosol generator (CAG). Characterization of pre- and postaerosolization of the drug showed that CAG aerosolized lucinactant retained both its chemical composition and surface tension-lowering properties.

Aerosolized lucinactant chromatographic profiles pre and post-aerosolization Aerosolized KL, Surfactant Ŷ Peptide (KL₄) Palmitic Acid 200.00 DPPC 100.0 Aerosolized KL₄ Surfactant 400.00 Lipids Palmitic Acic DPPC POPG Lipid Impurities 100.0 Surfaxin (Pre-Aerosolization) DPPC POPG J Lipid Impurities

Delivery of Aerosolized Medication to Ventilated Patients is Currently Quite Inefficient

Aerosolized surfactants and RDS

Animal Models

Wagner et al, *Crit Care Med. 28:2540, 2000.* Zimmermann et al. *Ped Pulmonol. 2010.* Rey-Santano C et al, *EPAS 2012.* Mielgo V et al, *EPAS 2012.* Lampland et al. *Ped Pulmonol. 2013.*

Clinical

Donn & Sinha Expert Opin Pharm 9(3): 2008. Finer et al. J Aerosol Med & Pulmon Drug Del., 2010.

Summary to Date:

Synthetic vs. Animal-Derived Surfactants

- Comparable surface tension activity.
- Controlled formulation consistency and stability.
- Improved production and product availability.
- Anti- inflammatory and antimicrobial activity.
- Resistant to inhibition by plasma proteins and oxidants when compared with other surfactants.
- Aerosol capability with non-invasive respiratory support.

Attempts to Minimize Invasiveness during the Acute Period: Where do we go from Here?

> Jan Mazela Poznan University of Medical Sciences, Poznan, Poland

 Guidelines for ventilatory management

- Vent support what we do?
- InSurE and LISA
- What is the bright future?

	Consensus Guidelines	
Neonatology	Neonatology 2012;103:353-366 Published online May 31, 20 DOI: 10.3158/000349028	CPAP therapy
		Recommendations
Management o	ensus Guidelines on the f Neonatal Respiratory Distress reterm Infants – 2013 Update	(1) CPAP should be started from birth in all babies at risk c RDS, such as those <30 weeks' gestation who do not nee MV, until their clinical status can be assessed (A).
Eren Ozek ^f Richard Play	o Carnielli". Gorm Greisen ⁴ . Mikko Haliman* vka ¹⁹ . Ola D. Saugstad ¹ . Umberto Simeoni ¹ imo Vento ¹ . Henry L. Halliday ¹⁰ .	(2) The system delivering CPAP is of little importance; howeve the interface should be short binasal prongs or mask and starting pressure of at least 6 cm H ₂ O should be applied (A COMPACT AND ADD ADD ADD ADD ADD ADD ADD ADD ADD
	Surfactant therapy	CPAP level can then be individualized depending on clinic condition, oxygenation and perfusion (D).
ration (A). (2) A policy of a	ations RDS should be given a natural surfactant prepa- early rescue surfactant should be standard but asions when surfactant should be administered	(3) CPAP with early rescue surfactant should be considered th optimal management for babies with RDS (A). (4) A trial of NIPPV can be considered to reduce the risk of et tubation failure in babies failing on CPAP; however, this ma not offer any significant long-term advantages (A).
	ry suite, such as extremely preterm infants in nother has not had antenatal steroids or those	Mechanical Ventilation
	intubation for stabilization (A).	Recommendations
(3) Babies with R	RDS should be given rescue surfactant early in the	(1) MV should be used to support babies when other methods o
	disease. A suggested protocol would be to treat	respiratory support have failed (B). Duration of MV should be minimized to reduce its injurious effect on the lung (B).
	veeks' gestation when FiO ₂ requirements >0.30 26 weeks when FiO ₂ requirements >0.40 (B).	(2) Targeted tidal volume ventilation should be employed as thi
	a in an initial dose of 200 mg/kg is better than 100	shortens duration of ventilation and reduces BPD (A).
	actant alfa or beractant for treatment of RDS (A).	(3) HFOV may be useful as a rescue therapy (B).
	e INSURE technique. More mature babies can	(4) When weaning from MV it is reasonable to tolerate a moder
	ubated to CPAP or nasal intermittent positive	ate degree of hypercarbia, provided the pH remains above 7.2
	tilation (NIPPV) immediately following surfac- inical judgement needs to be made as to wheth-	(B).
	ual baby will tolerate this (B)	(5) Avoid hypocarbia as this is associated with increased risks of BPD and periventricular leukomalacia (B)

Alternative Strategies for Surfactant Administration

 Kribs et al developed direct catheter SRT in Germany (MIST=LISA):

- placed on Single Nasopharyngeal (SNP) Tube and CPAP or IMV
- small feeding tube placed below the cords
- surfactant instilled slowly in synchrony with breathing
- Dargaville et al in Australia has described using an angiocatheter #16 passed through the cords an instilling surfactant at 1-3 cm below the cords
- RCT LMA trial on going but generally available in infants > 1200 g (Roberts K et al....)

Kribs, A et al, Acta Paediatr 2008; 97: 293 Dargaville et al, Neonatology 2012; 101: 326

LISA = MIST							
Method	Author, Year	Catheter	Magill Forceps Used?	Dose and Mode of Surfactant Delivery	Premedication		
Cologne method	Kribs et al 2007 (25)	4- to 5-FG feeding tube	Yes	100 mg/kg Slow push, 1–3 min	Atropine, sedation, and analgesia (optional)		
Hobart method	Dargaville et al 2011, 2013 (29) (30)	16-G Angiocath	No	100-200 mg/kg 3-4 boluses, 15-30 sec			
Take Care method	Kanmaz et al 2012 (31)	5-FG feeding tube	No	100 mg/kg Slow bolus, 30-60 sec	None		
Karolinska method	Bohlin (unpublished)	5-FG × 30-cm catheter	No	Slow bolus, 30 sec	Atropine/fentanyl		
SONSURE method	Aguar et al 2014 (32)	4-FG feeding tube	Yes	100 mg/kg Slow push, 1-3 min	Atropine		
Aguar, M et al.	Minimally Invasive S	urfactant Thera	oy: An Update	e Neoreviews 2	2014;15;e275		

LISA = MIST							
Trial, Author, Year	Intervention and Comparator (n)	Gestation Range	Entry Criteria	Primary Outcome	Results of Primary Outcome	Other Findings	
AMV trial Göpel et al 2011 (28)	I: LISA, Cologne method, 108 C: CPAP, 112	26-28 wk	<12 h after birth Fio₂ ≥0.30	Intubation day 2 or 3	28% vs 46% (NNT: 6; 95% Cl: 3-20)	Intubation at any time: 33% vs 73% (P < .001) Median days on MV: 0 vs 2 Oxygen at 28 days: 30% vs 45% (P = .032)	
Take Care trial, Kanmaz et al 2012 (31)	I: LISA, Take Care method, 100 C: INSURE, 100	<34 wk	Fio ₂ ≥0.40	Intubation <72 h	30% vs 45% (P = .02)	Mean duration of nCPAP: 78 vs 116 h (P = .1002) Mean duration of MV: 33 vs 64 h (P = .006) BPD: 20% vs 10% (P = .009)	
NINSAPP trial, Kribs et al 2013 (unpublished)	I: LISA, Cologne method, 107 C: Intubation and surfactant, 104	23-26 wk	Fio ₂ ≥0.30 or Silverman score ≥5	Survival without BPD	Pending	Pending	
Aguar, M et	al. Minimall	y Invasive S	urfactant The	erapy: An Up	date Neorevie	ews 2014;15;e275	

	Surfactant	Method	Population	Outcome
Jorch G	Alveofact [®]	Jet nebulizer 150 mg x 2 SNP tube CPAP	28-35 wks	A-a O ₂ gradient, PCO2 & Silverma score improved
Arroe M	Exosurf®	Side stream nebulizer prongs CPAP	23-36 wks	No significant benefits
Berggren E	Curosurf®	Jet nebulizer IF CPAP	27-34 wks	No significant benefits
Finer N	Aerosurf®	Aeroneb Pro [®] prongs CPAP	28-32 wks	Procedure safe

Take Home...

- Perinatal factors such as: cesarean section, presence of preeclampsia, low gestational age and Apgar score below 7 identify infants likely to experience nCPAP failure. When adjusted for center and region prenatal steroids and CPAP experience play a role as well
- INSURE is not influencing effectiveness of nCPAP when used as a rescue mode
- When using less invasive surf administration give Caffeine Citrate first!
- Bright future aerosolized surfactant administration with optimized nebulizer, delivery system and patient interface

New Directions: Respiratory Support in Neonates

Martin Keszler, M.D. Professor of Pediatrics Brown University Women and Infants Hospital of Rhode Island

The Following Industry Relationships are Germane to my Participation/Presentation

Draeger Medical Inc.	Consultant, Research Grant, Lecture Honoraria
Discovery Laboratories, Inc.	Chair, Medical Advisory Board
Medipost America	Member of Scientific Advisory Board

Rationale for Closed Loop Automatic Control

- NB respiratory function is labile
- Human response to perturbations is:
 - Inconsistent
 - Intermittent
 - Subject to bias
 - But adaptable and intelligent
- Automated systems are:
 - Consistent
 - Continuous
 - Objective
 - But rote, do not adapt and subject to artifact

Modalities of Closed Loop Control

- Automated FiO₂ control
- Mandatory Minute Ventilation (MMV)
- Neutrally Adjusted Respiratory Assist (NAVA)
- Proportional Assist Ventilation (PAV)
- Volume targeted ventilation
 - VG
 - PRVC
 - VTV

PLV vs. VTV Meta-analysis: Duration of MV Peng, et al, ADC-FNN 2014								
Study	VTV	PLV	MD 95% CI					
D'Angio 2006	28±24	24±23	3.6 (-3.1, 10.3)	⊢∎−				
Guven 2013	3.0±7	6.9±8	-3.9 (-7.4, -0.5)					
Keszler 2014	4.5±7	15±18	-11.1 (-24.8, 2.6) ——	•				
Lista 2014	8.8±3	12.3±3	-3.5 (-5.1, -1.9)					
Liu 2011	4.8±1	6.5±2	-1.7 (-2.5, -0.9)	-				
Piotrowski 1997	6.7±5	13±15	-6.3 (-12.9, 0.3)					
Singh 2016	8.4±13	9.7±14	-1.3 (-6.8, 4.2)					
Sinha 1997	5.1±3	6.7±6	-1.6 (-4.0, 0.8)	-8-				
Zhou 2007	9.3±2	9.8±2	-0.5 (-2.1, 1.1)	_				
Total	8.7±7.5	11.5±5.6	-2.0 (-3.1, -0.9)					
			-20	-10 0 10 2				

PLV vs. VTV Meta-analysis: BPD Peng, et al, ADC-FNN 2014								
Study	VTV	PLV	RR 95% CI					
D'Angio 2006	27/93	32/92	0.83 (0.55-1.27)	-				
Duman 2012	3/23	7/22	0.41 (0.12-1.39)		_			
Guven 2013	2/42	9/30	0.16 (0.04-0.68) —	-				
Keszler 2014	2/9	5/9	0.40 (0.10-1.55)		_			
Lista 2014	3/30	4/23	0.57 (0.14-2.32)		-	-		
Nafday 2005	2/16	4/18	0.56 (0.12-2.67)			-		
Singh 2016	16/57	17/52	0.86 (0.49-1.52)	-				
Sinha 1997	1/25	6/25	0.17 (0.02-1.29) —	-	+			
Zhou 2007	2/15	5/15	0.40 (0.09-1.75)		+			
Total	58/310	89/286	0.61 (0.46-0.82)	•				
			0.01	0.1	1	10		

PLV vs. VTV MAA: Other Outcomes Peng, et al, ADC-FNN 2014						
Outcome	No. of Studies	No. of Subjects	RR (95% Cl) or Mean diff (95%Cl)			
Any IVH	11	759	0.65 (0.42-0.99)			
Cystic PVL	7	531	0.33 (0.15-0.72)			
Grade 3-4 IVH	11	707	0.55 (0.39-0.79)			
Pneumothorax	8	595	0.46 (0.25-0.86)			
Any hypocapnia	2	58	0.56 (0.33-0.96)			
Failure of assigned mode	4	405	0.64 (0.43-0.94)			
Length of suppl. Oxygen (d)	2	133	-1.68 (-2.5to-0.88			

RCT of SI + PEEP vs PEEP te Pas, et al, Pediatrics 2007

	SI + PEEP n=104	PEEP n=103	P value
Intubated in DR	17%	36%	0.002
Length of RS (d)	2.7 [0.5-10]	4.3 [0.5-20]	0.01
>1 dose of Surf	10%	21%	0.02
Survival	98%	96%	0.4
BPD	22%	34%	0.05
IVH 3-4/PVL	9%	8%	0.4

Sustained Lung Inflation in DR: 25 cm H ₂ O for 15 Lista, et al, <i>Neonatology</i> 2010						
	SLI group (n = 89)	Control group (n = 119)	р			
INSURE	14 (16)	3 (3)	0.001			
Mechanical ventilation	45 (51)	90 (76)	< 0.0001			
duration, days	5 ± 11	11 ± 19	0.008			
Exclusive NCPAP	44 (49)	29 (24)	< 0.0001			
Surfactant	40 (45)	73 (61)	0.027			
O ₂ therapy	89 (100)	119 (100)	N/A			
duration, days	21 ± 27	31 ± 31	0.016			
Postnatal steroids	9 (10)	30 (25)	0.010			
Pneumothorax	8 (9)	10 (8)	0.920			
PDA	24 (27)	29 (24)	0.791			
BPD	6(7)	25 (25)	0.004			
Grade 3-4 IVH	1(1)	5 (4)	0.372			
PVL	4 (4)	11 (9)	0.299			

Italian Multicenter RCT Lista, et al, PAS 2014							
Control SI Adjusted (N=143) (N=148) P OR(95% CI)							
Birth weight (g)	894±247	893±241	NS				
GA (wk)	26.8±1.2	26.8±1.1	NS				
MV in 1 st 72h - no.(%)	93 (65)	79 (53)	0.04	0.57 (0.33-0.96)			
Surfactant – no. (%)	110 (77)	109 (74)	0.52	0.88 (0.50-1.56)			
Any MV – no. (%)	98 (69)	88 (59)	0.11	0.68 (0.41-1.13)			
BPD – no. (%)	50 (35)	57 (39)	0.42	1.14 (0.78-1.69)			
Death – no. (%)	12 (8)	17 (11)	0.40	1.39 (0.66-2.93)			
Ptx - no.(%)	2 (1)	9 (6)	0.06	4.57 (0.97-21.50)			

